-- The first thing I do when I wake up is go STRAIGHT to the bathroom. Up to that time, my displacement is equal to distance I traveled from my bed.
-- Once I'm relaxed and back in my room, dithering around and getting dressed, the distance I've traveled since I woke up is growing and growing, but my displacement is staying pretty steady, because I'm still hanging right around my bed.
-- I walk to school, walk between classes, maybe run around the track a couple times, walk to the lunchroom and back to classes, then walk home. By dinner time, my distance traveled during the day might be 3 or 4 MILES, but my displacement is only one floor down from my bedroom to the kitchen.
-- After my homework is done, I slide back into my warm bed and turn out the light. My displacement for the day is now zero ! The straight-line distance from the place I started to the place I finished is zero.
Answer:
Any motion of a body in which gravity is the sole force acting on it is known as free fall. A body in free fall has no force acting on it under general relativity, where gravity is reduced to space-time curvature.
<u></u>
<u>OAmalOHpeO</u>
To get it to start moving, he have to exert a force equal to its maximum force of static friction.
F= fs,max = Ms m g= (0.21) * (180) * (9.8) = 370 N
Let me know if im wrong but if not brainliest user for helping or best answer
M1V1 + M2V2 = M1V1' + M2V2'
where:
M1 is the mass of the large marble = 0.05 kg
V1 is the initial velocity of the large marble = 0.6 m/sec
M2 is the mass of the small marble = 0.03 kg
V2 is the initial velocity of the small marble = 0 m/sec (marble is at rest)
V1' is the final velocity of the large marble = -0.2 m/sec
V2' is the final velocity of the small marble that we want to calculate
Substitute with the givens in the above equation to get V2' as follows:
M1V1 + M2V2 = M1V1' + M2V2'
(0.05)(0.6) + (0.03)(0) = (0.05)(-0.2) + 0.03V2'
0.03 = -0.01 + 0.03V2'
0.03V2' = 0.03+0.01 = 0.04
V2' = 0.04/0.03
V2' = 1.334 m/sec