Answer:
Sound barrier.
Explanation:
Sound barrier is a sudden increase in drag and other effects when an aircraft travels faster than the speed of sound. Other undesirable effects are experienced in the transonic stage, such as relative air movement creating disruptive shock waves and turbulence. One of the adverse effect of this sound barrier in early plane designs was that at this speed, the weight of the engine required to power the aircraft would be too large for the aircraft to carry. Modern planes have designs that now combat most of these undesirable effects of the sound barrier.
Answer:
yes, it is
Explanation:
The sequence: (+4)
23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83
Hope this helps! :)
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Answer:
The diameter increases
Explanation:
The expansion in the metal is uniform in every dimension
Answer: c) 450 kPa
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 150 kPa
= final pressure of gas = ?
= initial volume of gas = v L
= final volume of gas =
Therefore, the new pressure of the gas will be 450 kPa.