The only 'difference' is that they are different categories.
It's like asking "What's the difference between Susie and girl ?"
Or "What's the difference between Cadillac and car ?"
Displacement <em>IS</em> a vector quantity.
Here when an object is placed on the level floor then in that case there are two forces on the object
1). Weight of object downwards (mg)
2). Normal force due to floor which will counterbalance the weight (N)
so when no force is applied on the box at that time normal force is counter balanced by weight.
Now here it is given that A person tried to lift the box upwards
So now there are two forces on the box
1). Applied force of person
2). Normal force due to ground
So now these two forces will counter balance the weight of the crate
So we can write an equation for force balance like
given that
here
m = 30 kg and
g = acceleration due to gravity = 10 m/s^2
now from above equation
So force applied by the person must be 150 N
Answer:
the final temperature of the tea is 7.39⁰C.
Explanation:
Given;
mass of the tea, m = 375 g
specific heat capacity of the tea, C = 4.184 JJ/g°C
initial temperature of the tea, t₁ = 95°C
the final temperature of the tea, t₂ = ?
Energy lost by the refrigerator, Q = 137,460 J
The energy lost by the refrigerator is given by the following formula;
-Q = mc(t₂ - t₁)
-137,460 =375 x 4.184(t₂ - 95°C)
-137,460 = 1569(t₂ - 95°C)
Therefore, the final temperature of the tea is 7.39⁰C.
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:
b) Force on deep end:
c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:
2) Force on the triangular part:
here
h = h(d) - h(s)
h = 10-4
h = 6ft
now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:
The pumps which supplies energy to move the water from the ground to a high elevation. The charges that flow throughout the wires.