Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
a) since force = mass * acceleration
f= 900 * 0 (because constant speed = 0 acceleration)
similarly b) f = 0
Answer:
<em>Answer: Work equals force times distance. 3,000 J</em>
Explanation:
Work Done By A Force
When some force
is applied and a displacement
is achieved, the work done by the force is given by

Note that the work is a scalar magnitude as the result of the dot-product of two vectors. If the force and the displacement are parallel, then the vectors can be replaced as its magnitudes F,x and the work is

The dot product becomes a simple arithmetic product, i.e force times distance.
Sara weighs 500 Nw and she climbs up a 6 meter set of stairs. She needs to lift her weight up, so the force is the weight and the distance is the height of the stairs, thus

Answer: Work equals force times distance. 3,000 J
Solid has vibrating molecules that barely move to keep it's shape
liquid moves at an average speed and keeps it's volume but not it's shape
gases move quickly and all over the place so they don't have a shape or volume
plasma is the quickest moving and is like a gas