Answer:
Density of 18.0-karat gold mixture is
.
Explanation:
A mixture of 18 parts gold, 5 parts silver, and 1 part copper.
Let mass of gold be 18x
Let the mass of silver be 5x
Let the mass of copper be 1x
The density of gold = 
The density of silver = 
The density of copper =

Volume of the gold in the mixture = 
Volume of the silver in the mixture = 
Volume of the copper in the mixture = 
Mass of the mixture = M = 18x+5x+1x =24x
Volume of the mixture = 
Density of the mixture:

Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens
I think is c because your seeing how your using you’re time.
The sun is a yellow dwarf star, so the correct answer is yellow. Hope it helps! If you could vote me brainiest, that would be awesome!