Answer:
This is because, Kelvins and Celcius degrees both agree at fixed points i.e; the lower fixed point and upper
Answer:
molecus in a gas cool down
Explanation:
the molecules lose heat and energy do they slow down they move closer to other molecules and form a liquid
Answer:
336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.
Explanation:
In this case, the balanced reaction is:
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactant and product participate in the reaction:
- C₃H₈: 1 mole
- O₂: 5 moles
- CO₂: 3 moles
- H₂O: 4 moles
Being the molar mass of each compound:
- C₃H₈: 44 g/mole
- O₂: 16 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
Then, by stoichiometry, the following quantities of mass participate in the reaction:
- C₃H₈: 1 mole* 44 g/mole= 44 grams
- O₂: 5 moles* 16 g/mole= 80 grams
- CO₂: 3 moles* 44 g/mole= 132 grams
- H₂O: 4 moles* 18 g/mole= 72 grams
So you can apply the following rules of three:
- If by stoichiometry 1 mole of C₃H₈ forms 132 grams of CO₂, 2.55 moles of C₃H₈ how much mass of CO₂ will it form?

mass of CO₂= 336.6 grams
- If by stoichiometry 1 mole of C₃H₈ forms 72 grams of H₂O, 2.55 moles of C₃H₈ how much mass of H₂O will it form?

mass of H₂O= 183.6 grams
<u><em>336.6 grams of CO₂ and 183.6 grams of H₂O are formed from 2.55 moles of propane.</em></u>
The total estimated cost with the appropriate significant figures is
$195,13.
Any two non-zero digits that are separated by a zero are important. For instance, the number 108.0097 has seven significant digits. Every zero that is both to the right and left of a non-zero digit and the decimal point is never meaningful. For instance, the number 0.00798 had three significant digits.
Simply multiply the required number of goods by their individual costs, then add them all up to calculate this:
3*13,69= 41,07 2*9,53=19,06 \s1*135= 135
Total cost: $41,07 plus $19,06 plus 135 equals $55,13.
Thus, the overall price will be $195,13.
Learn more about significant figures here-
brainly.com/question/14359464
#SPJ9
Answer:
we know that gas molecules move fast by hitting the container and they never meet,so if we have one single gas molecule then it will move slower . This is because it is alone in an empty container so until it hits the container to change it's movements it will make the process slower.
Read the explanation below to have a better idea based on the kinetic molecular theory.
Explanation:
Hello in this question we have a container and in it is a single gas molecule. So there is our gas molecule and in fact right there that violates the kinetic molecular theory. Because the kinetic molecular theory thinks of these particles as being dimension less points. Because there is so much space between particles. The particles themselves have such an insignificant volume as they can be thought of as dimension lys points. Okay. But anyway this particle is in rapid motion and this motion is essentially random. So it's moving and it will eventually hit the wall of its container. It's moving rapidly so it's going to hit it pretty quickly and when it hits the wall of that container Yeah, it is going to bounce off when it does that. It's a totally elastic collision. So that means there will be no energy transfer, no energy loss, no energy gained. It will just serve to change the direction of the particle. So when it hits the wall it's going to bounce back off the wall and continue in a straight line until it hits another wall and then it will bounce off that wall and it will continue moving in this motion in this motion its speed is related to the amount of energy it has and therefore its temperature. So if we add heat, it will move faster. If we remove heat or cool it down, it will move slower. So when we remove heat, it will move slower. The kinetic molecular theory says it will be constantly moving As long as it is above absolute zero. It's only at absolute zero or 0 Kelvin, where would stop moving. Okay, so all these things describe its motion. It's in rapid random motion in a straight line until it hits the wall of its container. Then it will rebound without a transfer of any energy. It will be totally elastic collision. If we were to heat it up, it would move faster. If we were to cool it down, it would move more slowly, we would have to cool it all the way down to absolute zero before it would stop moving. Right, so all of these things describe its motion. In terms of that kinetic molecular theory,