Answer: The moles needed are 0.01.
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= ?
= volume of solution in ml
Now put all the given values in the formula of molarity, we get
Therefore, the moles needed are 0.01.
Answer:
A
Explanation:
a push or pull on an object
Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Answer:
The limiting reactant is H₂
Explanation:
The reaction of hydrogen (H₂) and carbon monoxide (CO) to produce methanol (CH₃OH) is the following:
2H₂(g) + CO(g) → CH₃OH(g)
From the balanced chemical equation, we can see that 1 mol of CO reacts wIth 2 moles of H₂. So, the stoichiometric ratio is:
2 mol H₂/1 mol CO = 2.0
We have 500 mol of CO and 750 mol of H₂, so we calculate the ratio to establish a comparison:
750 mol H₂/500 mol CO = 1.5
Since 2.0 > 1.5, we have fewer moles of H₂ than are needed to completely react with 500 moles of CO. In fact, we need 1000 moles of H₂ and we have 750 moles. So, the limiting reactant is H₂.
ΔG⁰ = ΔH⁰ - TΔS
ΔH⁰ = Hf,(CH₃OH) - Hf,(CO) = -238.7 + 110.5 = -128.2 kJ/mol
ΔS = S(CH₃OH) - S(CO) - 2S(H₂) = 126.8 - 197.7 - 2 x 130.6 = -332.1 J/mol.K
So
ΔG⁰ = - 128200 + 332.1 T
For the reaction to be spontaneous:
ΔG⁰ < 0
So: -128200 + 332.1 T < 0
332.1 T < 128200
T < 386.028 K