The total pressure = 1.402 atm
<u><em>calculation</em></u>
Total pressure = partial pressure of gas A + partial pressure of gas B + partial pressure of third gas
partial pressure of gas A= 0.205 atm
Partial pressure of gas B =0.658 atm
partial pressure for third gas is calculated using ideal gas equation
that is PV=nRT where,
p(pressure)=? atm
V(volume) = 8.65 L
n(moles)= 0.200 moles
R(gas constant)=0.0821 L.atm/mol.k
T(temperature) = 11°c into kelvin =11+273 =284 k
make p the subject of the formula by diving both side by V
p =nRT/v
p = [(0.200 moles x 0.0821 L.atm/mol.K x 284 K)/8.65L)] =0.539 atm
Total pressure is therefore = 0.205 atm +0.658 atm +0.539 atm
=1.402 atm
The differential rate expression for the rate of change in the concentration of B with time is
-rB = dCB/dt = kCB^n
where k is the rate constant and
n is the order of the reaction
This is assuming that the rate is only affected by the concentration of B and the order of the reaction is in the nth order.
Bed rock is a layer underneath minerals
Answer:
Mass of
produced = 32 g
Explanation:
Calculation of the moles of
as:-
Mass = 82.4 g
Molar mass of
= 122.55 g/mol
The formula for the calculation of moles is shown below:
Thus,
From the reaction shown below:-

2 moles of potassium chlorate on reaction forms 3 moles of oxygen gas
So,
0.67237 moles of potassium chlorate on reaction forms
moles of oxygen gas
Moles of oxygen gas = 1 mole
Molar mass of oxygen gas = 32 g/mol
<u>Mass of
produced = 32 g</u>