94.6 g. You must use 94.6 g of 92.5 % H_2SO_4 to make 250 g of 35.0 % H_2SO_4.
We can use a version of the <em>dilution formula</em>
<em>m</em>_1<em>C</em>_1 = <em>m</em>_2<em>C</em>_2
where
<em>m</em> represents the mass and
<em>C</em> represents the percent concentrations
We can rearrange the formula to get
<em>m</em>_2= <em>m</em>_1 × (<em>C</em>_1/<em>C</em>_2)
<em>m</em>_1 = 250 g; <em>C</em>_1 = 35.0 %
<em>m</em>_2 = ?; _____<em>C</em>_2 = 92.5 %
∴ <em>m</em>_2 = 250 g × (35.0 %/92.5 %) = 94.6 g
Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter
Answer:
because moles is the chemical unit*Avogadro's number, meaning it's the amount of atoms in the given unit.
Explanation:
Answer:
0.88g
Explanation:
The reaction equation:
2NaI + Cl₂ → 2NaCl + I₂
Given parameters:
Mass of Sodium iodide = 2.29g
Unknown:
Mass of NaCl = ?
Solution:
To solve this problem, we work from the known to the unknown.
First find the number of NaI from the mass given;
Number of moles =
Molar mass of NaI = 23 + 126.9 = 149.9g/mol
Now insert the parameters and solve;
Number of moles =
= 0.015mol
So;
From the balanced reaction equation;
2 moles of NaI produced 2 moles of NaCl
0.015mole of NaI will produce 0.015mole of NaCl
Therefore;
Mass = number of moles x molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Now;
Mass of NaCl = 0.015 x 58.5 = 0.88g