Answer:
Part a)

Part B)

Explanation:
Part A)
As we know that the point A lies on the top of the loop
so we will have by energy conservation

so the speed at point A is given as




Part B)
Now the force equation at point A is given as

[/tex]


It would be 1. B 2. A 3. A
<span>principal quantum number (n) </span>represents the relative overall energy of each orbital
Hope this helps!
Answer:
Gravitational force will be 16 times more.
Explanation:
we know;
Gravitational force (F) = (Gm1m2)/d^2
when mass of each is doubled and distance between them is halved;
F= (G2m1×2m2)/(d/2)^2
=(4Gm1m2)/(d^2/4)
=4×4(Gm1m2)/d^2
=16(Gm1m2)/d^2
=16F
Answer:
16.26 cm in front of the mirror
Explanation:
Using,
1/f = 1/u+1/v....................... Equation 1
Where f = focal focal length of the concave mirror, u = object distance, v = image distance.
make v the subject of the equation
v = fu/(u-f)................... Equation 2
Note: The focal length of a concave mirror is positive
Using the real- is- positive convention
Given: f = 22/2 = 11 cm, u = 34 cm.
Substitute into equation 2
v = (34×11)/(34-11)
v = 374/23
v = 16.26 cm.
The image will be formed 16.26 cm in front of the mirror.