Answer:
he wavelength is different (greater) than the wavelength of the incident photon
Explanation:
The Compton effect is the scattering of a photon by an electron, this process is analyzed using the conservation of momentum, in which we assume that initially the electron is at rest and after the collision it recedes, therefore the energy of the incident photon decreases and consequently its wavelength changes
To complete the sentence we use the wavelength is different (greater) than the wavelength of the incident photon
Answer:
Biodiversity.
Explanation:
The number of different species in a particular area is known as biodiversity. Blue whales, plants, different kind of animals, and micro-organism living in an ocean is the example of biodiversity. In biodiversity each specie has its own role. For example, if a biodiversity has large number of plants (species), it will have many type of crops.
Answer: Thats all I know about notes and rests, srry if this not what ur expecting.
Explanation:
Answer:
a. 960 W b. One 1 kW room heater
Explanation:
a. The rate of heat conduction P = kA(T₂ - T₁)/d where k = 2 × 0.040 W/m-K = 0.080 W/m-K since the thermal conductivity of glass wool is 0.040 W/m-K and that of the material is twice the thermal conductivity of glass wool, A = area of walls = 120 m², T₁ = outside surface temperature = 5.0 °C, T₂ = inside surface temperature = 18.0 °C and d = thickness of wall = 13.0 cm = 0.13 m
P = kA(T₂ - T₁)/d
= 0.080 W/m-K × 120 m²(18.0 °C - 5.0 °C)/0.13 m
= 9.6 Wm/K × 13 K/0.13 m
= 124.8 Wm/0.13 m
= 960 W
b. The number of 1 kW room heater required will be
n = rate of heat conduction/power of one room heater = 960 W/ 1 kW = 960 W/1000 W = 0.96 ≅ 1
So we need only one 1 kW room heater.
Answer:
1. sediment layering and compacting on top of each other and solidifying
2. sediment layering and compacting (not as much) on top of each other and solidifying, just not as much
Explanation:
hope this helps! :))