1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
6

If 3.0 newtons are required to lift a carton 12 meters, how much work is done? 0.0 J 4.0 J 15 J 36 J

Physics
2 answers:
svlad2 [7]3 years ago
7 0
The answer is actually 36 J.

Hope this helped :)

Brainliest?
statuscvo [17]3 years ago
3 0

Answer:

36 J is the answer

Explanation:

i just had this problem on a test

You might be interested in
A block is attached to a horizontal spring and oscillates back and forth on a frictionless horizontal surface at a frequency of
Nastasia [14]

Answer:

Amplitude = 0.058m

Frequency = 6.25Hz

Explanation:

Given

Amplitude (A) = 8.26 x 10-2 m

Frequency (f) = 4.42Hz

Conversation of energy before split

½mv² = ½KA²

Make A the subject of formula

A = v\sqrt{\frac{m}{k} }

Conversation of energy after split

½(m/2)V'² = ½(m/2)V² = ½KA'²

½(m/2)V² = ½KA'²

Make A the subject of formula

First divide both sides by ½

(m/2)V² = KA'²

Divide both sides by K

\frac{m}{2K}V² = A'²

v\sqrt{\frac{m}{2k} } = A'

Substitute v\sqrt{\frac{m}{k} } for A in the above equation

A' = A/√2

A' = 8.26 x 10^-2/√2

A' = 0.05840702012600882

Amplitude after split = 0.058 (Approximated)

Frequency (f') = f√2

f' = 4.42√2

f' = 6.25082394568908011

Frequency after split = 6.25Hz (approximated)

8 0
3 years ago
if two point charges are separated by 1.5 cm and have charge values of 2.0 and -4.0, respectively, what is the value of the mutu
RUDIKE [14]

Complete question:

if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.

Answer:

The mutual force between the two point charges is 319.64 N

Explanation:

Given;

distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m

value of the charges, q₁ and q₂ = 2 μC and - μ4 C

Apply Coulomb's law;

F = \frac{k|q_1||q_2|}{r^2}

where;

F is the force of attraction between the two charges

|q₁| and |q₂| are the magnitude of the two charges

r is the distance between the two charges

k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

F = \frac{k|q_1||q_2|}{r^2} \\\\F = \frac{8.99*10^9 *4*10^{-6}*2*10^{-6}}{(1.5*10^{-2})^2} \\\\F = 319.64 \ N

Therefore, the mutual force between the two point charges is 319.64 N

4 0
3 years ago
How do darwin finches illistrate the thoery of natural selection
cricket20 [7]
As they evolved and adapted, those of the fittest survived to reproduce. Those that did not adapt, died.
5 0
3 years ago
Isotopes of an element differ in their number of ?
Lera25 [3.4K]

neutrons

Explanation:

Isotopes of an element differ in their number of neutrons.

Isotopy is the existence of two or more atoms of the same element having the same atomic number but different mass numbers due to the differences in the  number of neutrons in their nucleus.

  • Isotopes of an element have the same electronic configuration.
  • They have the same chemical properties but differ in their masses.
  • The mass of an atom is function of the protons and neutrons.

Learn more:

Isotope brainly.com/question/2593342

#learnwithBrainly

4 0
2 years ago
A person sitting on a pier observes incoming waves that have a sinusoidal form with a distance of 2.5 m between the crests. Of a
Doss [256]

Answer:

Part(a): The frequency is \bf{0.2~Hz}.

Part(b): The speed of the wave is \bf{0.5~m/s}.

Explanation:

Given:

The distance between the crests of the wave, d = 2.5~m.

The time required for the wave to laps against the pier, t = 5.0~s

The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is \lambda = 2.5~m.

Also, the time required for the wave for each laps is the time period of oscillation and it is given by T = 5.0~s.

Part(a):

The relation between the frequency and time period is given by

\nu = \dfrac{1}{T}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)

Substituting the value of T in equation (1), we have

\nu &=& \dfrac{1}{5.0~s}\\~~~&=& 0.2~Hz

Part(b):

The relation between the velocity of a wave to its frequency is given by

v = \nu \lambda~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2)

Substituting the value of \nu and \lambda in equation (2), we have

v &=& (0.2~Hz)(2.5~m)\\~~~&=& 0.5~m/s

5 0
3 years ago
Other questions:
  • The amount of energy required to raise the temperature of 1 kilogram of a substance by 1 Kelvin is called its
    10·2 answers
  • If an unknown element has a mass of 17 and contains 6 neutrons, how many protons does it have ?
    12·1 answer
  • Twenty students were surveyed to find out how many hours of tv they watch during a school week
    9·1 answer
  • What type of motor operates at a constant steady-state speed regardless of the load?
    8·1 answer
  • Jeremy stands on the edge of a cliff. He throws three identical rocks with the same speed. Rock X is thrown vertically upward, r
    5·1 answer
  • An electric heater draws 13 amperes of current when connected to 120 volts. If the price of electricity is $0.10/kWh, what would
    10·1 answer
  • The potential difference between two parallel plates is 227 V. If the plates are 6.8 mm apart, what is the electric field betwee
    9·1 answer
  • 1-A boy rolls a toy car across a floor with a velocity of 3.21 m/s. How long does it take the car to travel a distance of 4.50 m
    11·1 answer
  • 6. An elevator takes 33k) of energy to lift a group of people up 6 m. What is the total mass of
    13·1 answer
  • A bowling ball with a mass of 9kg is thrown down a lane with a constant speed of 3 m/s. The ball hits the 1.5kg pin, initially a
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!