Answer:
boiling point elevation - colligative property
color - non-colligative property
freezing point depression - colligative property
vapor pressure lowering - colligative property
density - non-colligative property
Explanation:
A colligative property is a property that depends on the number of particles present in the system.
Freezing point depression, boiling point elevation and vapour pressure lowering are all colligative properties of solutions.
Colour and density do not depend on the number of particles present hence they are not colligative properties.
Answer: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
Explanation:
Answer:
\left \{ {{y=206} \atop {x=82}}Pb \right.
Explanation:
isotopes are various forms of same elements with different atomic number but different mass number.
Radioactivity is the emission of rays or particles from an atom to produce a new nuclei. There are various forms of radioactive emissions which are
- Alpha particle emission \left \{ {{y=4} \atop {x=2}}He \right.
- Beta particle emission \left \{ {{y=0} \atop {x=-1}}e \right.
- gamma radiation \left \{ {{y=0} \atop {x=0}}γ \right.
in the problem the product formed after radiation was Pb-206. isotopes of lead include Pb-204, Pb-206, Pb-207, Pb-208. they all have atomic number 82. which means the radiation cannot be ∝ or β since both radiations will alter the atomic number of the parent nucleus.
Only gamma radiation with \left \{ {{y=0} \atop {x=0}}γ \right. will produce a Pb-206 of atomic number 82 and mass number 206 , since gamma ray have 0 mass and has 0 atomic number.equation is shown below
\left \{ {{y=206} \atop {x=82}}Pb\right ⇒ \left \{ {{y=206} \atop {x=82}}Pb\right + \left \{ {{y=0} \atop {x=0}}γ\right.
Thus the atomic symbol is \left \{ {{y=206} \atop {x=82}}Pb\right
Reaction of dissociation: Ag₂SO₄ → 2Ag⁺ + SO₄²⁻.
m(Ag₂SO₄) = 4 g.
V(Ag₂SO₄) = 1 l.
n(Ag₂SO₄) = m(Ag₂SO₄) ÷ M(Ag₂SO₄).
n(Ag₂SO₄) = 4 g ÷ 311,8 g/mol.
n(Ag₂SO₄) = 0,0128 mol.
n(Ag⁺) = 2 · 0,0128 mol = 0,0256 mol.
n(Ag₂SO₄) = n(SO₄²⁻) = 0,0128 mol.
c(Ag⁺) = n ÷ V = 0,0256 mol ÷ 1 l = 0,0256 mol/l.
Ksp = c(Ag⁺)² · c(SO₄²⁻).
Ksp = (0,0256 mol/l)² · 0,0128 mol/l.
Ksp = 8,3·10⁻⁶.