Recycling is important because you can save the planet by using the same plastic instead of throwing it away.
Answer:
Rate of internal heat transfer = 23.2 Btu/Ibm
mass flow rate = 21.55 Ibm/s
Explanation:
using given data to obtain values from table F7.1
Enthalpy of water at temperature of 100 F = 68.04Btu/Ibm
Enthalpy of water at temperature of 50 F = 18.05 Btu/Ibm
from table F.3
specific constant of glycerin 
<u>The rate of internal heat transfer ( change in enthalpy ) </u>
h4 - h3 = Cp ( T4 - T3 ) --------------- ( 1 )
where ; T4 = 50 F
T3 = 10 F
Cp = 0.58 Btu/Ibm-R
substitute given values into equation 1
change in enthalpy ( h4 - h3 ) = 23.2 Btu/Ibm
<u>Determine mass flow rate of glycol</u>
attached below is the detailed solution
mass flow rate of glycol = 21.55 Ibm/s
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
Time of concentration,
⇒ 1280 min
Peak runoff rate,
⇒4.185 ff³/s
Explanation:
See detailed explanation