Answer:
it travels at a different refractive index.
Explanation:
for example when light travels into water, it slows down, causing it to continue to travel at a different or another angle or direction. hope this helped!
Answer:
10 V
Explanation:
The potential difference between two points is the amount of work required to carry a unit charge from one point to the other point. This would result in a potential difference between this two points.
The difference between the potential across two points B and A is 
From the image attached:

Place the object in between the two jaws such that they touch opposite ends of the object making sure the object is held firmly but don’t press too tight. If you need to measure an internal diameter, then insert the upper jaws in to the cavity and open them till they touch the sides. Tighten the locking screw to hold the jaws in position.
Note the position of the vernier scale zero on the main scale. The main scale reading is the division just before where the zero mark of the vernier scale is aligned. So is the zero mark aligns just after the fifth division between 3 and 4 the main scale reading is then 3.5.
The next step is to take the vernier scale reading. To do this find the mark on the vernier scale which lines up perfectly with a mark on the main scale. The vernier reading can then be found by multiplying the least value of the vernier scale with the number of divisions till that mark. For example if the least value is 0.01 mm and the 7thmark of the vernier scale is lined up perfectly then the vernier scale reading is 7 x 0.01 = 0.07.
The final step is to add the main scale and vernier readings to get the final measurement. For example 3.5 + 0.07 = 3.57 mm.
Answer:

Explanation:
Let hockey puck is moving at constant speed v
so here we have

so time taken by the puck to strike the wall is given as

now time taken by sound to come back at the position of shooter is given as


so we know that total time is 1.9 s




now we have


Answer:
The resonant frequency of this circuit is 14.5 kHz.
Explanation:
Given that,
Inductance of a parallel LCR circuit, 
Capacitance of parallel LCR circuit, 
At resonance the inductive reactance becomes equal to the capacitive reactance. The resonant frequency is given by :



or
f = 14.5 kHz
So, the resonant frequency of this circuit is 14.5 kHz. Hence, this is the required solution.