The question is somewhat ambiguous.
-- It's hard to tell whether it's asking about '3 cubic meters'
or (3m)³ which is actually 27 cubic meters.
-- It's hard to tell whether it's asking about '100 cubic feet'
or (100 ft)³ which is actually 1 million cubic feet.
I'm going to make an assumption, and then proceed to
answer the question that I have invented.
I'm going to assume that the question is referring to
'three cubic meters' and 'one hundred cubic feet' .
OK. We'll obviously need to convert some units here.
I've decided to convert the meters into feet.
For 1 meter, I always use 3.28084 feet.
Then (1 meter)³ = 1 cubic meter = (3.28084 ft)³ = 35.31 cubic feet.
So 3 cubic meters = (3 x 35.31 cubic feet) = 105.9 cubic feet.
That's more volume than 100 cubic feet.
Answer:
electrons
Explanation:
An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).
<em>Resultant angle; θ = 25.59° </em>
This question is dealing with bearings and distance.
We are told that from point A, the camel walks 20 km at 15° in the south of east direction.
Thus, d_s,e = 20 km
Resolving along the horizontal east direction gives; d_e = 20 cos 15
d_e = 19.32 km
Also, resolving along the vertical south direction gives; d_s = 20 sin 15
d_s = 5.18 km
Net vertical distance; d_vert = 8km - 5.18km = 2.72 km
Net horizontal distance; d_hor = 25km - 19.32 km = 5.68 km
Now, the resultant angle is given by;
tan θ = d_vert/d_hor
tan θ = 2.72/5.68
tan θ = 0.4789
θ = tan^(-1) 0.4789
θ = 25.59°
Read more at; brainly.com/question/22518031
Answer:
1500 m/s
Explanation:
Recall that for a wave,
Speed = frequency x wavelength
here we are given frequency = 500 Hz and wavelength = 3m
simply substitute into above equation
Speed = 500 Hz x 3m
= 1500 m/s
Answer:
Hi myself Shrushtee.
Explanation:
Artificial gravity is a must for any space station if humans are to live there for any extended length of time. Without artificial gravity, human growth is stunted and biological functions break down. An effective way to create artificial gravity is through the use of a rotating enclosed cylinder, as shown in the figure. Humans walk on the inside edge of the cylinder, which is sufficiently large (diameter of 2235 meters) that its curvature is not readably noticeable to the inhabitants. (The space station in the figure is not drawn to the scale of the human.) Once the space station is rotating at the necessary speed, how many minutes would it take the space station to make one revolution?
The distance traveled by the man in one revolution is simply the circumference of the space station, C = 2p R. From this result, you should be able to deduce the time it takes for the space station to sweep out a complete revolution.
<h2>
<em><u>P</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainleist</u></em></h2>