Answer:
6.23 KOH 90% son necesarios
Explanation:
Una solución 1N de KOH requiere 1equivalente (En KOH, 1eq = 1mol) por cada litro de solución.
Para responder esta pregunta se requiere hallar los equivalentes = Moles de KOH para preparar 100mL = 0.100L de una solución 1N. Haciendo uso de la masa molar de KOH y del porcentaje de pureza del KOH se pueden calcular los gramos requeridos para preparar la solución así:
<em>Equivalentes KOH:</em>
0.100L * (1eq / L) = 0.100eq = 0.100moles
<em>Gramos KOH -Masa molar: 56.1056g/mol-:</em>
0.100moles * (56.1056g/mol) = 5.61 KOH se requieren
<em>KOH 90%:</em>
5.61g KOH * (100g KOH 90% / 90g KOH) =
<h3>6.23 KOH 90% son necesarios</h3>
The physical properties used by scientists to describe all matter, sight, smell, taste, color, texture, mass, weight, volume, and density.
Answer:
237.8L of water would need to be added.
Explanation:
The first thing to do is to identify that the equation to be used is M1V1=M2V2. (This equation works because it turns everything into moles which can then be compared).
Then figure out what information you have and what is being found. In this case:
M1 = 54.7 M
V1 = 1092 mL = 1.092 L
M2 = 0.25 M
V2 = unknown
Then solve the equation for whatever you are trying to find.
M1V1=M2V2
V2=M1V1/M2
Now you need to plug everything in.
V2=(54.7M*1.091L)/0.25M
V2=238.93L
That means that the solution needs a volume of 238.7L to gain a molarity of 0.25M but the starting solution already had a volume of 1.092 L meaning that to find the amount of solvent that needs to be added you just subtract the starting volume by the volume that the solution needs to be.
238.93L - 1.091L = 237.8L
Therefore the answer is that 237.8L needs to be added to a 1.092L 54.7M NaCl solution to make the concentration 0.25M.
I hope this helps. Let me know if anything is unclear.
<u>Question:</u>
For the cell constructed from the hydrogen electrode and metal-insoluble salt electrode, B) calculate the mean activity coefficient for 0.124 b HCl solution if E=0.342 V at 298 K
<u>Answer:</u>
The mean activity coefficient for HCl solution is 0.78.
<u>Explanation:</u>
Activity coefficient is defined as the ratio of any chemical activity of any substance with its molar concentration. So in an electrochemical cell, we can write activity coefficient as γ. The equation for determining the mean activity coefficient is

As we know that
= 0.22 V and E = 0.342 V, the equation will become








So, the mean activity coefficient is 0.78.