Answer:
5200 ppm
Explanation:
As per the definition, parts per million of a contaminant is a measure of the amount of mass of contaminant present per million amount of the solution. It is denoted by ppm.
Given in the question,
Water = 250 ml = 250 g
Lead = 1.30 g
So,
ppm of Lead =
=
= 5200 ppm
So, as calculated above, there is 5200 ppm of lead present in 250 ml of water.
Answer:
it has six significant figures
Answer:
<h2>81.5 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question we have
mass = 25 × 3.26
We have the final answer as
<h3>81.5 g</h3>
Hope this helps you
Answer:
0.0251 M
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
The mole ratio of the acid (nA) = 1
The mole ratio of the base (nB) = 1
Next, the data obtained from the question. This include the following:
Volume of acid (Va) = 10.1mL
Molarity of acid (Ma) =..?
Volume of base (Vb) = 61.9 mL
Molarity of base (Mb) = 0.0041 M
Next, we shall determine the molarity of the acid, HNO3 as follow:
MaVa/MbVb = nA/nB
Ma x 10.1 / 0.0041 x 61.9 = 1
Cross multiply to express in linear form
Ma x 10.1 = 0.0041 x 61.9
Divide both side by 10.1
Ma = (0.0041 x 61.9) /10.1
Ma = 0.0251 M
Therefore, the molarity of HNO3 is 0.0251 M