Answer:
Both objects travel the same distance.
(c) is correct option
Explanation:
Given that,
Mass of first object = 4.0 kg
Speed of first object = 2.0 m/s
Mass of second object = 1.0 kg
Speed of second object = 4.0 m/s
We need to calculate the stopping distance
For first particle
Using equation of motion

Where, v = final velocity
u = initial velocity
s = distance
Put the value in the equation

....(I)
Using newton law

Now, put the value of a in equation (I)

Now, For second object
Using equation of motion

Put the value in the equation

....(I)
Using newton law


Now, put the value of a in equation (I)

Hence, Both objects travel the same distance.
A fatter handle. This allows you to provide more torque to the screw, which should eventually loosen it.
In this problem, we are given with the resultant velocity of the swimmer considering the current is running 0.91 m/s that is equal to 1.1 m/s2. In this case, using v = d/t, t = 3000m / 1.1 m/s equal to 2727.27 seconds equal to 45.45 hours. The distance downstream is equal to 2727.27 seconds * 0.91 m/s equal to 2481.82 meters.
1) D
2) D.) Greater than 
Explanation:
1)
The phenomenon of total internal reflection occurs when a ray of light hitting the interface between two mediums is totally reflected back into the original medium, therefore no refraction into the second medium occurs.
This phenomenon occurs only if two conditions are satisfied:
- The index of refraction of the first medium is larger than the index of refraction of the 2nd medium
- The angle of incidence is greater than a certain angle called critical angle
In picture 1, we have 4 different diagrams. In the diagrams:
- The red arrow represents the incident ray
- The green arrow represents the refracted ray
- The blue arrow represents the reflected ray
Total internal reflection occurs when there is no refraction, therefore when there is no green arrow: this occurs only in figure D, so this is the correct option. (in figure C, there is a refracted ray but it is parallel to the interface: this condition occurs when the angle of incidence is exactly equal to the critical angle, however in this problem, the angle of incidence is greater than the critical angle, so the correct option is D)
2)
As we stated in problem 1), total internal reflection occurs when the angle of incidence is equal or greater than the critical angle. Therefore in this case, the angle of incidence must be
D.) Greater than 
power=voltsxamps=watts.
12=3xamps
4 amps
------------
A. To increase the current, decrease the resistance.
----------------
r=v/i = 53/7