-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole = 
= 
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
= 
x = 
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.
1. Solids
- definite volume & shape
- little energy
-vibrate in place
- very incompressible
2. Liquids
- held together yet can still flow
Answer is: concentratio of H₃O⁺ ions is 4.2·10⁻³ M.<span>
Chemical reaction: HCOOH(aq) + H</span>₂O(l) ⇄ HCOO⁻(aq) + H₃O⁺(aq).<span>
c(HCOOH) = 0,1 M.
[</span>H₃O⁺] = [HCOO⁻] = x.<span>
[HCOOH] = 0,1 M - x.
</span>Ka = [H₃O⁺] · [HCOO⁻] / [HCOOH].
0,00018 = x² / (0,1 M - x).<span>
Solve quadratic equation: x = </span>[H₃O⁺] = 0,0042 M.