The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

the specific heat capacity

the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is

and the amount of heat supplied is

, so if we re-arrange the previous formula we find the increase in temperature of the water:
Answer: C
Explanation: weak nuclear
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.
Answer:
V = P = 0 m/s
Explanation:
When a pendulum bob is given an initial displacement or the initial velocity, it starts to execute periodic motion or simple harmonic motion. During this motion the kinetic and potential energy keeps interconverting. The kinetic energy becomes maximum at the lowest point, that is the mean point. Hence, the velocity is maximum at this point, as well. Similarly, at both extreme positions the potential energy becomes maximum due to maximum height, while the kinetic energy becomes zero at the highest point, that is extreme positions. At these, positions the velocity will be minimum and it will be zero due to zero kinetic energy. Hence, at both extreme positions the bob stops momentarily before, reversing the direction. Hence,
<u>V = P = 0 m/s</u>