Answer : This is not an ideal mixture.
Explanation :
Using Raoult's law :

where,
= total vapor pressure of mixture
= vapor pressure of pure methanol = 256 torr
= vapor pressure of pure water = 55.3 torr
= mole fraction of water = 0.312
= mole fraction of methanol = 1 - 0.312 = 0.688
Now put all the given values in the above formula, we get:



From this we conclude that the total vapor pressure of mixture is less than the total given vapor pressure of 211 torr. That means, the interactions between the methanol and water would be weaker than those between the individual substances. So, this is not an ideal mixture.
Hence, this is not an ideal mixture.
Answer:
2914 J
Explanation:
Step 1: Given data
- Mass of the copper tubing (m): 665.0 g
- Initial temperature: 15.71 °C
- Final temperature: 27.09 °C
- Specific heat of copper (c): 0.3850 J/g.°C
Step 2: Calculate the temperature change
ΔT = 27.09 °C - 15.71 °C = 11.38 °C
Step 3: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.3850 J/g.°C × 665.0 g × 11.38 °C
Q = 2914 J
Answer:
346.g of solution
Explanation:
In this case, if we have 5.2 % by mass it means that in <u>100 g of the solution we will have 5.2 g of glucose</u>. Therefore we can do the calculation:
<u>5.2 g of glucose = 100 g of solution</u>

So, if we need 8 g of glucose we had to have 346.15 g of solution
This logic can work for all types of solutions. By mass (as in this case), by volume or mass/volume.
I hope it helps!
Water vapor >> water >> ice
Water vapor is the gaseous form of water, only achieved when water is heated to a boil or under certain higher pressure circumstances. Water is a liquid in temperatures between 0-100°C (32-212°F). Ice, the solid form of water, occurs when water freezes, at temps below 0°C (32°F).
Answer:
42.8
Explanation:
A particle travelling through potential difference V has energy E =qV = 1/2mv²
v = √(2qV / m)
ve = √(2qV / me)
vh = √(2qV / mh)
ve / vh = √( (2qV / me) ÷(2qV / mh) = √ ( mh / me ) where mh = mass of hydrogen ion and me is mass of electron, V voltage is the same, ve is speed of electron and vh is the speed of hydrogen ion
ve / vh = √ ( mh / me ) = √ ( 1.67 × 10⁻²⁷ kg) / ( 9.11 × 10 ⁻³¹ kg) = 42.8