Answer: Normal fault
Explanation:
The type of fault that is explained above is a normal fault. We should note that normal faults typically takes place in a divergent boundary in a scenario where the crusts may have been pulled apart.
Since the crust is pulled apart in this case, it leads to the downward movement of the hanging wall which leads to the football being above the hanging wall.
Let us say that x is the cut that we will make on the
sides to make a box, therefore the new dimensions are:
l = 15 – 2x
w = 8 – 2x
It is 2x since we cut on two sides.
We know that volume is:
V = l w x
V = (15 – 2x) (8 – 2x) x
V = 120x – 30x^2 – 16x^2 + 4x^3
V = 120x – 46x^2 + 4x^3
Taking the 1st derivative:
dV/dx = 120 – 92x + 12x^2
Set dV/dx = 0 to get maxima:
120 – 92x + 12x^2 = 0
Divide by 12:
x^2 – (92/12)x + 10 = 0
(x – (92/24))^2 = -10 + (92/24)^2
x - 92/24 = ±2.17
x = 1.66, 6
We cannot have x = 6 because that will make our w
negative, so:
x = 1.66 inches
So the largest volume is:
V = 120x – 46x^2 + 4x^3
V = 120(1.66) – 46(1.66)^2 + 4(1.66)^3
V = 90.74 cubic inches
It is called a negative nuetron/atom
Answer:
Explanation:
spring constant k = 425 N/m
a ) At the point of equilibrium
restoring force = frictional force
= kx = 10 N
425 x = 10
x = 2.35 cm
b )
Work done by frictional force
= -10 x 2.35 x 10⁻² x 2 J ( Distance is twice of 2.35 cm )
= - 0.47 J
= Kinetic energy remaining with the cookie as it slides back through the position where the spring is unstretched .
= 425 - 0.47
= 424.53 J
=
<span>The side of the worm that faces up when placed in the
tray for dissection is the smoother side.
</span>You can observe the organs of these tiny creatures by dissecting a preserved earthworm<span>. In dissecting
a worm, </span><span>lay the worm on your </span>dissecting
tray<span> <span>with its dorsal side facing up.</span></span>