The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
<h3>
Force required to pull one end at a constant speed</h3>
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;
F = ma
where;
- m is mass
- a is acceleration
At a constant speed, the acceleration of the object will be zero.
F = m x 0
F = 0
Thus, the force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
Learn more about constant speed here: brainly.com/question/2681210
Answer:
im pretty sure it is C. Insulation
Explanation:
because it says reduced, and basically ur insulating the fire.
Answer:
B) the change in momentum.
Explanation:
The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (
):
(1)
We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

So, (1) becomes

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time:
. If we substitute into the previous equation, we find

And the quantity
is equivalent to the change in momentum,
.
Answer:
Conservation of momentum.
Momentum is zero after collision, no direction or speed.
Explanation:
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 