Answer:
The weight of the girl = 1045.86 kg/m³
Explanation:
Density: This can be defined as the ratio of the mass of a body to the volume of that body. The S.I unit of density is kg/m³.
From Archimedes principle,
R.d = Density of the person/Density of water = Weight of the person in air/Upthrust.
⇒ D₁/D₂ = W/U............................... Equation 1.
Where D₁ = Density of the person, D₂ = Density of water, W = Weight of the person in air, U = Upthrust in water.
Making D₁ the subject of the equation,
D₁ = D₂(W/U)................................... Equation 2
<em>Given: D₂ = 1000 kg/m³ , W = 509.45 N, U = lost in weight = weight in air - weight in water = 509.45 - 22.34 = 487.11 N</em>
<em>Substituting these values into equation 2</em>
D₁ = 1000(509.45/487.11)
D₁ = 1045.86 kg/m³
Thus the weight of the girl = 1045.86 kg/m³
<em></em>
Cups
teaspoon
tablespoon
liters
milliliters
gallons
pints
tons
inches
Loudness of a sound wave is directly proportional to the intensity of the sound wave. In other words, when one increases, other also increases and vice-versa
Hope this helps!
Answer:
(A) -2940 J
(B) 392 J
(C) 212.33 N
Explanation:
mass of bear (m) = 25 kg
height of the pole (h) = 12 m
speed (v) = 5.6 m/s
acceleration due to gravity (g) = 9.8 m/s
(A) change in gravitational potential energy (ΔU) = mg(height at the bottom- height at the top)
height at the bottom = 0
= 25 x 9.8 x (0-12) = -2940 J
(B) kinetic energy of the Bear (KE) =
= = 392 J
(C) average frictional force =
- change in KE (ΔKE) = initial KE - final KE
- ΔKE = -
- when the Bear reaches the bottom of the pole, the final velocity (Vf) is 0, therefore the change in kinetic energy becomes ΔKE = - 0 = 392 J
\frac{-(ΔKE+ΔU)}{h}[/tex] =
= = 212.33 N