Answer:
n physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}}{\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}. In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.
The standard unit of kinetic energy is the joule, while the imperial unit of kinetic energy is the foot-pound.
Explanation:
Esta energía<span> puede ser convertida en otras, como calor para calentar agua o edificios, invernaderos etc. o electricidad. Podemos convertir la </span>energía<span> solar en eléctrica de dos </span>formas<span>: Fotovoltáica (PV): La radiación solar se convierte directamente en electricidad
hope this help mark brainliest plz</span>
A) the universe is expanding
Every galaxy is moving away from each other - not just us. And the further they are away, the faster they are moving
A)We know the formula of the angular speed is ω = 2π / TWhere T is the time period.When second hand completes one revolution then the time taken is 60s.So T = 60sThen the angular speed of the second hand is ω= 2π / (60s) = 0.1047 rad/sb)When the minute hand completes one revolution the time taken is T = 1 hr = 3600sThen the angular speed of the minute hand is ω =(2π) / (3600s) = 0.001745 rad/sc)When the hour hand completes one revolution then the timeperiod is T = 12hrs = (12)(3600)sThen the angular speed of the hour hand is ω =(2π) / [(12)(3600)s] = 1.45444 x 10^-4 rad/s
The temperature difference of 1 K is equivalent to the temperature difference of 1 °C. Therefore, we find the relationship between the change in °F and °C.
A change of 212 - 32 °F is the same as a change of 100 - 0 °C. Thus:
(212 - 32) °F = (100 - 0) °C
1 °C = 1.8 °F
1 K = 1.8 °F