F = m.a
a = v^2 / r
a = 12^2 / 6.0
a = 24 m/s^2
F = 55 × 24
F = 1320 N
Understanding the given:
85 kg mountain climber
6.50 m long rope
gravity = 10m/s2
If we want to identify the work done on this scenario
we get f = 85kg x 10m/s2 = 850 N
w = 850N x 6.5 m = 5525 J
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
D. only briefly while being connected or disconnected.
Explanation:
As we know that transformer works on the principle of mutual inductance
here we know that as per the principle of mutual inductance when flux linked with the primary coil charges then it will induce EMF in secondary coil
So here when AC source is connected with primary coil then it will give output across secondary coil because AC source will have change in flux with time.
Now when we connect DC source across primary coil then it will not induce any EMF across secondary coil because DC source is a constant voltage source in which flux will remain constant always
So here in DC source the EMF will only induce at the time of connection or disconnection when flux will change in it while rest of the time it will give ZERO output
so correct answer will be
D. only briefly while being connected or disconnected.
Answer:
it will double because im right
Answer:
1000 N
Explanation:
First, we need to find the deceleration of the running back, which is given by:

where
v = 0 is his final velocity
u = 5 m/s is his initial velocity
t = 0.5 s is the time taken
Substituting, we have

And now we can calculate the force exerted on the running back, by using Newton's second law:

so, the magnitude of the force is 1000 N.