<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Answer:
B. It is directly proportional to the source charge.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Hence, the statement which is true of the electric field at a distance from the source charge is that it is directly proportional to the source charge.
Answer: The level of CO2 has risen.
Explanation:
From the table shown, we can see that the quantity of CO₂ in the atmosphere has steadily risen since the year 1960 going from 317 CO₂PPM in that year to 390 CO₂PPM in 2010.
This is a cause for alarm because with so much carbon dioxide in the atmosphere, there will be an even greater greenhouse effect that will contribute to global warming.
I can think of two of them:
-- carbon monoxide
-- black soot
I think they decrease echo and reduce noise, they do this by either absorbing vibrations or by scattering the sound so that echoes arrive at different times rather than reverberating as a standing wave. An echo is a reflection of a sound that arrives at the listener with a delay after the direct sound. The delay is usually proportional to the distance of the reflecting surface from the source and the listener.