Answer: vf1/vf2= 1/ sqrt(2)
Explanation :on the moon no drag force so we have only the force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics
if the rock travels H to the bottom we can calculate velocity:
vo=0m/s (drops the rock) , yo=0
vf*vf= vo*vo+2g(y-yo)
when the rock is halfway y = H/2 so:
vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)
when the rock reach the bottom y=H so:
vf2*vf2=2*g*H so vf2 = sqrt(2gH)
so vf1/vf2= 1/ sqrt(2)
good luck from colombia
The value of the second charge is 1.2 nC.
<h3>
Electric potential</h3>
The work done in moving the charge from infinity to the given position is calculated as follows;
W = Eq₂
E = W/q₂
<h3>Magnitude of second charge</h3>
The magnitude of the second charge is determined by applying Coulomb's law.

Thus, the value of the second charge is 1.2 nC.
Learn more about electric potential here: brainly.com/question/14306881
Answer:
Explanation:
a) A coin has two sides, therefore the total outcome possible when a coin is tossed is 2 i.e Head (H) and Tail (T)
outcome of two coins will be 4 i.e 2^2
Outcome of three coins will be 8 i.e 2^3 and so on. Since its following a trend, the outcome when 'n' coins is tossed will be 2^n.
Using the general formula, the possible outcome when a coin is tossed 13 times will be "2^13"
b)
Answer:
2,54 cm are equal to 1 inch
Explanation:
Doing the conversion:
![55[cm]*\frac{1[inch]}{2,54[cm]} =21,65[inch]](https://tex.z-dn.net/?f=55%5Bcm%5D%2A%5Cfrac%7B1%5Binch%5D%7D%7B2%2C54%5Bcm%5D%7D%20%3D21%2C65%5Binch%5D)