There are 3 types of faults, strike-slip fault, normal fault and reverse fault. So choices a and d will no longer be considered. Now the difference between a normal fault and a reverse fault is in a normal fault the hanging wall moves downwards and in a reverse fault the hanging wall moves upwards.
So considering the two faults and their characteristics, the answer would be b. reverse fault.
The angular momentum calculated with respect to the axis of rotation of an object is given by:

where m is the object's mass, v is its tangential speed, and r is its distance from the axis of rotation.
In case of a man on a Ferris wheel, we need to have these quantities in order to calculate his angular momentum. These quantities corresponds to:
- m, the mass of the man
- v, the tangential speed of the wheel at its edge
- r, the radius of the wheel
It is possible to calculate the angular momentum even if we don't know v, the tangential speed. In this case, we need to know at least the angular velocity

(because from this relationship we can find the tangential speed:

) or the period of rotation of the wheel, T (because we can find the angular velocity from it:

).
Answer:
Work done, W = 2675.4 J
Given:
mass, m = 70.0 kg
height, H = 3.90 m
Solution:
According to the question, as the person jumps the stairs up, there is an increase in the potential energy of the person which is provided by the work done in climbing the stairs and is given by:
Work done, W = mgH
where
g = acceleration due to gravity = ![9.8 m/s^{2}[tex][tex]W = 70.0\times 9.8\times 3.90 = 2675.4 J](https://tex.z-dn.net/?f=9.8%20m%2Fs%5E%7B2%7D%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%2070.0%5Ctimes%209.8%5Ctimes%203.90%20%3D%202675.4%20J)
As waves travel into the denser medium, they slow down and wavelength decreases.
Explanation:
The denser the medium the slower the waves (speed of light) travels.
The answer is C, because average velocity equals displacement over time. -80 meters divided by 20 seconds equals 4 m/s south.