D transferring electrons because that causes electricity
Answer:
I = 2172.46 A
Explanation:
Given that,
The length of a solenoid, l = 2.1 m
The inner radius of the solenoid, r = 28 cm = 0.28 m
The number of turns in the wire, N = 1000
The magnetic field in the solenoid, B = 1.3 T
We need to find the current carried by it. We know that, the magnetic field in a solenoid is given by :
Put all the values,
So, it carry current of 2172.46 A.
Answer:
Wait, that can happen? I'm sorry.
Explanation:
The third equation of free fall can be applied to determine the acceleration. So that Paola's acceleration during the flight is 39.80 m/.
Acceleration is a quantity that has a direct relationship with velocity and also inversely proportional to the time taken. It is a vector quantity.
To determine Paola's acceleration, the third equation of free fall is appropriate.
i.e = ± 2as
where: V is the final velocity, U is the initial velocity, a is the acceleration, and s is the distance covered.
From the given question, s = 20.1 cm (0.201 m), U = 4.0 m/s, V = 0.
So that since Poala flies against gravity, then we have:
= - 2as
0 = - 2(a x 0.201)
= 16 - 0.402a
0.402a = 16
a =
= 39.801
a = 39.80 m/
Therefore Paola's acceleration is 39.80 m/.
Visit: brainly.com/question/17493533
The new magnitude of the force of attraction will be 6 times the original force of attraction
<h3>How to determine the initial force </h3>
- Mass 1 = m₁
- Mass 2 = m₂
- Gravitational constant = G
- Distance apart = r
- Initial force (F₁) = ?
F = Gm₁m₂ / r²
F₁ = Gm₁m₂ / r²
<h3>How to determine the new force </h3>
- Mass 1 = 2m₁
- Mass 2 = 3m₂
- Gravitational constant = G
- Distance apart (r) = r
- New force (F₂) =?
F = Gm₁m₂ / r²
F₂ = G × 2m₁ × 3m₂ / r²
F₂ = 6Gm₁m₂ / r²
But
F₁ = Gm₁m₂ / r²
Therefore
F₂ = 6Gm₁m₂ / r²
F₂ = 6F₁
Thus, the new magnitude of the force of attraction will be 6 times the original force of attraction
Learn more about gravitational force:
brainly.com/question/21500344
#SPJ1