Before we describe the phases of the Moon, let's describe what they're not. Some people mistakenly believe the phases come from Earth's shadow cast on the Moon. Others think that the Moon changes shape due to clouds. These are common misconceptions, but they're not true. Instead, the Moon's phase depends only on its position relative to Earth and the Sun.
The Moon doesn't make its own light, it just reflects the Sun's light as all the planets do. The Sun always illuminates one half of the Moon. Since the Moon is tidally locked, we always see the same side from Earth, but there's no permanent "dark side of the Moon." The Sun lights up different sides of the Moon as it orbits around Earth – it's the fraction of the Moon from which we see reflected sunlight that determines the lunar phase.
I think the correct answer from the choices listed above is option A. The three components of air are all <span>classified as pure substances since they are not chemically bonded so they can be separated by certain processes and be present as a pure substance. Hope this answers the question.</span>
Answer:
There are two types of hydrocarbons: aliphatic and aromatic. The three types of aliphatic hydrocarbons are alkanes, alkenes, and alkynes. Aromatic hydrocarbons include benzene. Overall, examples of hydrocarbons are methane, ethane, propane, and butane.
Answer:
3)The reaction is not at equilibrium and willproceed to the right.
Explanation:
The reaction quotient of an equilibrium reaction measures relative amounts of the products and the reactants present during the course of the reaction at particular point in the time.
It is the ratio of the concentration of the products and the reactants each raised to their stoichiometric coefficients. The concentration of the liquid and the gaseous species does not change and thus is not written in the expression.
Q < Kc , reaction will proceed in forward direction.
Q > Kc , reaction will proceed in backward direction.
Q = Kc , reaction at equilibrium.
Given that:
Q = ![3.56\times 10^{-4}](https://tex.z-dn.net/?f=3.56%5Ctimes%2010%5E%7B-4%7D)
K = ![6.02\times 10^{-2}](https://tex.z-dn.net/?f=6.02%5Ctimes%2010%5E%7B-2%7D)
Since, Q < K , reaction is not at equilibrium and will proceed to right, in forward direction.