Answer:
group 17 the halogen.as it has 7 electron in its outermost ring
I would say it should be Einstein's famous equation of e=mc^2 which means energy =mass x the speed of light squared. With this equation Einstein showed that energy comes from a mass travelling at the speed of light squared which is a fundamental equation to explain physical phenomena.
Answer:
643g of methane will there be in the room
Explanation:
To solve this question we must, as first, find the volume of methane after 1h = 3600s. With the volume we can find the moles of methane using PV = nRT -<em>Assuming STP-</em>. With the moles and the molar mass of methane (16g/mol) we can find the mass of methane gas after 1 hour as follows:
<em>Volume Methane:</em>
3600s * (0.25L / s) = 900L Methane
<em>Moles methane:</em>
PV = nRT; PV / RT = n
<em>Where P = 1atm at STP, V is volume = 900L; R is gas constant = 0.082atmL/molK; T is absolute temperature = 273.15K at sTP</em>
Replacing:
PV / RT = n
1atm*900L / 0.082atmL/molK*273.15 = n
n = 40.18mol methane
<em>Mass methane:</em>
40.18 moles * (16g/mol) =
<h3>643g of methane will there be in the room</h3>
Answer:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Answer: N3 H12 P O3
Explanation:
From the question :
N = 31.57% H = 9.10% P = 23.27%
O= 36.06%
Divide each of the element by their respective relative atomic masses.
N = 31.57 / 14 = 2.26
H = 9.10/ 1 = 9.10
P = 23.27 / 31= 0.750
O =36.06 / 16 = 2.25
Divide each answer by the lowest of them all, we then have:
N = 2.26/ 0.750 = Approx = 3
H = 9.10 / 0.750 = Approx = 12
P = 0.750/ 0.750= 1
O = 2.25 / 0.750 = Approx = 3
The empiral formula is
N3 H12 P O3