Answer:The greater the amount of water that there is it will take longer for the water to freeze because more heat has to be dissipated into the environment
Explanation:
Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
and
when moving towards observer
With
of 76 then taking speed in air as 343 m/s we have


Similarly, with
of 65 we have

Now

v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain

<span>The magnitude of the rock is equal to g. After the rock is released, there are no more forces acting on it, yet gravity remains. The initial inputs, on a bridge, at an angle of 30 deg below horizontal do not matter after the release.</span>
Complete question:
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)
Answer:
The peak emf generated by the coil is 15.721 kV
Explanation:
Given;
Radius of coil, r = 0.250 m
Number of turns, N = 500-turn
time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s
magnetic field strength, B = 0.425 T
Induced peak emf = NABω
where;
A is the area of the coil
A = πr²
ω is angular velocity
ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s = 60 rev/s
Induced peak emf = NABω
= 500 x (π x 0.25²) x 0.425 x 376.738
= 15721.16 V
= 15.721 kV
Therefore, the peak emf generated by the coil is 15.721 kV
Average speed = (total distance covered) / (time to cover the distance)
Total distance covered = (9.5m + 3.5m + 15m) = 28 meters
Time to cover the distance = 43 seconds
Average speed = (28 meters) / (43 seconds)
Average speed = 0.65 meters/second