Answer:
Isotopes can both be the same element but have a different number of electrons
Explanation: not sure if more was supposed to be there, but i tried
Answer:
10 seconds.
Explanation:
We can use a kinematic equation where we know the final velocity, initial velocity, acceleration, and need to determine the time <em>t: </em>
<em />
<em />
<em />
The initial velocit is 30 m/s, the final velocity is 0 m/s (as we stopped), and the acceleration is -3 m/s².
Substitute and solve for <em>t: </em>
<em />
<em />
<em />
Hence, it will take the car 10 seconds to come to a stop.
Density<span> is the </span>mass<span> of an object </span>divided<span> by its </span>volume<span>. So the answer would be Yes. Hope it helps! (:</span>
Answer:
Solid materials that do not possess an orderly arrangement of atoms are called glasses (mineraloids).
Explanation:
A Mineraloid is a natural, inorganic, amorphous (lacking "defined chemical composition") solid body that does not exhibit crystallinity. It exhibits characteristics similar to those of minerals, but does not have the "ordered atomic structure" necessary to meet the definition of a mineral.
Glasses or colloids have a totally random structure on an atomic scale. They are amorphous and get the honorary name of mineraloid.
<u><em>Solid materials that do not possess an orderly arrangement of atoms are called glasses (mineraloids).</em></u>
Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position

Converting units of weights in units of mass (equation of motion)

From hook's law we can calculate the spring constant k

If we put m and k into the DE, we get

Denoting the constants
2λ =
= 
λ = b/0.215

λ^2 - w^2 = 
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86