I think the anwer is electrolyte :)... i had it on a test a couple days ago.
Answer:
Using the periodic table of the elements to find atomic weights, we find that hydrogen has an atomic weight of 1, and oxygen's is 16. In order to calculate the molecular weight of one water molecule, we add the contributions from each atom; that is, 2(1) + 1(16) = 18 grams/mole.
Explanation:
hope this helped
Answer:
2MnO4^- (aq) + 3C2O4^2- (aq) + 2H2O (l) --> 2MnO2(s) +6CO3^2 -(aq) + 4H^+ (aq)
Explanation:
First, write the half equations for the reduction of MnO4^- and the oxidation of C2O4^2- respectively. Balance it.
Reduction requires H+ ions and e- and gives out water, vice versa for oxidation.
Reduction:
MnO4^- (aq) + 4H^+ (aq) + 3e- ---> MnO2(s) + 2H2O (l)
Oxidation:
C2O4^2- (aq) + 2H2O (l) ---> 2CO3^2 -(aq) + 4H^+ (aq) + 2e-
Balance the no. of electrons on both equations so that electrons can be eliminated. we can do so by multiplying the reduction eq by 2, and oxidation eq by 3.
2MnO4^- (aq) + 8H^+ (aq) + 6e- ---> 2MnO2(s) + 4H2O (l)
3C2O4^2- (aq) + 6H2O (l) ---> 6CO3^2 -(aq) + 12H^+ (aq) + 6e-
Now combine both equations and eliminate repeating H+ and H2O.
2MnO4^- (aq) + 8H^+ (aq) + 3C2O4^2- (aq) + 6H2O (l) --> 2MnO2(s) + 4H2O (l) +6CO3^2 -(aq) + 12H^+ (aq)
turns into:
2MnO4^- (aq) + 3C2O4^2- (aq) + 2H2O (l) --> 2MnO2(s) +6CO3^2 -(aq) + 4H^+ (aq)
Answer :
Dipole moments occur when there is a separation of charge. Dipole moments occur due to atoms electronegativity, where one atom has the ability to attract electrons towards it giving it a negative charge and the one deficient in electrons acquire a positive charge called as the bond moment.
But if the bond moments are equal and opposite in direction , they cancel each other and thus there is no net dipole moment in the molecule.
For example: In carbon dioxide , both the -C=O bonds are polar but as the molecule is linear and the the magnetic moments are equal and oppposite, they cancel each other and the molecule is non polar.