Answer: It does make sense, because I've been involved in these careers and have a long family line of them. And other questions?
Explanation:
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
how many people were asked though
Explanation:
Answer:
b. 1232.08 km/hr
c. 1.02 kn
Explanation:
a) For dynamic similar conditions, the non-dimensional terms R/ρ V2 L2 and ρVL/ μ should be same for both prototype and its model. For these non-dimensional terms , R is drag force, V is velocity in m/s, μ is dynamic viscosity, ρ is density and L is length parameter.
See attachment for the remaining.