Line spectra are obtained when individual elements are heated using a high-voltage electrical discharge. This heating causes excitation of the element and a subsequent emission of distinct lines of colored light are obtained. Each element has its own unique emission line spectrum; therefore, if any of the tested substances were the same, their spectra would match. However, this is not the case so none of the substances are the same.
hope it helps!
Answer:
0.54m
Explanation:
Step one:
given data
length of seesaw= 3m
mass of man m1= 85kg
weight = mg
W1= 85*10= 850N
mass of daughter m2= 35kg
W2= 35*10= 350N
distance from the center= (1.5-0.2)= 1.3m
Step two:
we know that the sum of clockwise moment equals the anticlockwise moment
let the distance the must sit to balance the system be x
taking moment about the center of the system
350*1.3=850*x
455=850x
divide both sides by 850
x=455/850
x=0.54
Hence the man must sit 0.54m from the right to balance the system
The answer to your question is "A. a lower frequency of the siren.
Because the person in back of the ambulance will hear a lower frequency of the siren. This is because the waves are stretched out. A longer wavelength results in a lower frequency.
we know that center of mass is given as
r = (m₁
+ m₂
)/(m₁ + m₂)
taking derivative both side relative to "t"
dr/dt = (m₁ d
/dt + m₂ d
/dt)/(m₁ + m₂)
v = (m₁
+ m₂
)/(m₁ + m₂)
taking derivative again relative to "t" both side
dv/dt = (m₁ d
/dt + m₂ d
/dt)/(m₁ + m₂)
a= (m₁
+ m₂
)/(m₁ + m₂)
We will use this equation:
s = 1/2*a*t^2 + v0*t + s0
where:
s = space traveled
a = acceleration
t = time
v0 = initial speed
s0 = initial space
In this case::
v0 = 0
s0 = 0
So our equation will look like that now:
s = 1/2 * a * t^2
let's calculate the acceleration first of all:
a = (vf - vi) / t
where vf is the final speed and vi is the initial speed. t is the time.
a = (25m/s) / 10s = 2.5 m/s^2
Now we can calculate the space:
s = 1/2 * (2.5 m/s^2) * (10s)^2 = 125m
---
Hope it was helpful! Have a great day.