<h2>
Answer: 8.93 g/cm³
</h2>
<h3>
Explanation:
</h3>
Density = mass ÷ volume
= 217.0 g ÷ 24.3 cm³
= 8.93 g/cm³
∴ the unknown sample of mass 217.0 grams and volume of 24.3 cm³ has a density of 8.93 g/cm³.
1) Chemical equation
<span>2NH4Cl(s)+Ba(OH)2⋅8H2O(s)→2NH3(aq)+BaCl2(aq)+10H2O(l)
2) Stoichiometric ratios
2 mol NH4Cl(s) : 54.8 KJ
3) Convert 24.7 g of NH4Cl into number of moles, using the molar mass
molar mass of NH4Cl = 14 g/mol + 4*1 g/mol + 35.5 g/mol = 53.5 g/mol
number of moles = mass in grams / molar mass
number of moles = 24.7 g / 53.5 g/mol = 0.462 moles
4) Use proportions:
2 moles NH4Cl / 54.8 kJ = 0.462 moles / x
=> x = 0.462 moles * 54.8 kJ / 2 moles = 12.7 kJ
Answer: 12.7 kJ
</span>
When highly electronegative element like oxygen is directly attached to less electronegative element like hydrogen the electrons from less electronegative elements are attracted toward the highly electronegative element, making the less electronegative element deficient in electron density (partial positive) and a partial negative charge on more electronegative element is created. In such situation the intermolecular forces formed are dipole-dipole interactions or hydrogen bond interaction like in HF.
Answer:
Mass of water = 73.08 g
Explanation:
Given data:
Mass of hydrogen = 35 g
Mass of oxygen = 65 g
Mass of water = ?
Solution:
First of all we will write the balanced chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass/ molar mass
Number of moles of hydrogen = 35 g/ 2 g/mol
Number of moles of hydrogen = 17.5 mol
Number of moles of oxygen = 65 g / 32 g/mol
Number of moles of oxygen = 2.03 moles
Now we compare the moles of water with moles hydrogen and oxygen.
H₂ : H₂O
2 : 2
17.5 : 17.5
O₂ : H₂O
1 : 2
2.03 : 2× 2.03 =4.06 mol
Number of moles of water produced by oxygen are less so oxygen is limitting reactant.
Mass of water:
Mass of water = number of moles × molar mass
Mass of water = 4.06 mol × 18 g/mol
Mass of water = 73.08 g