Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
Answer:
The mass of the massive object at the center of the Milky Way galaxy is 
Explanation:
Given that,
Diameter = 10 light year
Orbital speed = 180 km/s
Suppose determine the mass of the massive object at the center of the Milky Way galaxy.
Take the distance of one light year to be 9.461×10¹⁵ m. I was able to get this it is 4.26×10³⁷ kg.
We need to calculate the radius of the orbit
Using formula of radius



We need to calculate the mass of the massive object at the center of the Milky Way galaxy
Using formula of mass

Put the value into the formula


Hence, The mass of the massive object at the center of the Milky Way galaxy is 
<u>Answer:</u>
Ball will move 92.8125 meter along the cliff in 7.5 seconds.
<u>Explanation:</u>
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
In this case initial velocity = 0 m/s, acceleration = 3.3
, we need to calculate displacement when time = 7.5 seconds.
Substituting

So ball will move 92.8125 meter along the cliff in 7.5 seconds.
Answer:
714.285s
Explanation:
use relative velocity
8-4.5 = 3.5m/s
x = 2500m
2500/3.5 = 714.285s = 700s (with sig figs)
Can we see the diagram? Thanks.