<span>(kg) Melting Point of Tin
</span>
Explanation:
(a) After the engines stop, the rocket reaches a maximum height at which it will stop and begin to descend in free fall due to gravity.
(b) We must separate the motion into two parts, when the rocket's engines is on and when the rocket's engines is off.
First we must find the rocket speed when the engines stop:

This final speed is the initial speed in the second part of the motion, when engines stop until reach its maximun height. Therefore, in this part the final speed its zero and the value of g its negative, since decelerates the rocket:

So, the maximum height reached by the rocket is:

(c) In the first part we have:

And in the second part:

So, the time it takes to reach the maximum height is:

(d) We already know the time between the liftoff and the maximum height, we must find the rocket's time between the maximum height and the ground, therefore, is a free fall motion:


So, the total time is:

Answer:

Explanation:
Gravitational potential energy is the energy an object possesses due to its position. It is the product of mass, height, and acceleration due to gravity.

The object has a mass of 150 kilograms and is raised to a height of 20 meters. Since this is on Earth, the acceleration due to gravity is 9.8 meters per square second.
- m= 150 kg
- g= 9.8 m/s²
- h= 20 m
Substitute the values into the formula.

Multiply the three numbers and their units together.


Convert the units.
1 kilogram meter square per second squared (1 kg *m²/s²) is equal to 1 Joule (J). Our answer of 29,400 kg*m²/s² is equal to 29,400 Joules.

The crate has <u>29,400 Joules</u> of potential energy.
Answer:
427.392 kJ
Explanation:
m = Mass of gas = 4.5 kg
Initial temperature = 200 K
Final temperature = 360 K
R = Mass specific gas constant = 296.8 J/kgK
= Specific heat ratio = 1.5
Work done for a polytropic process is given by

The work input during the process is -427.392 kJ