Explanation:
The given data is as follows.
= 100 mm Hg or
= 0.13157 atm
=
= (1080 + 273) K = 1357 K
=
= (1220 + 273) K = 1493 K
= 600 mm Hg or
= 0.7895 atm
R = 8.314 J/K mol
According to Clasius-Clapeyron equation,
![log(\frac{P_{2}}{P_{1}}) = \frac{\Delta H_{vap}}{2.303R}[\frac{1}{T_{1}} - \frac{1}{T_{2}}](https://tex.z-dn.net/?f=log%28%5Cfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303R%7D%5B%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B2%7D%7D)
![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
0.77815 = ![\frac{\Delta H_{vap}}{19.147J/K mol} \times 6.713 \times 10^{-5} K](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147J%2FK%20mol%7D%20%5Ctimes%206.713%20%5Ctimes%2010%5E%7B-5%7D%20K)
=
J/mol
= ![2.219 \times 10^{5}J/mol \times 10^{-3}\frac{kJ}{1 J}](https://tex.z-dn.net/?f=2.219%20%5Ctimes%2010%5E%7B5%7DJ%2Fmol%20%5Ctimes%2010%5E%7B-3%7D%5Cfrac%7BkJ%7D%7B1%20J%7D)
= 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.
Answer:
Both have the same amount of particles.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ particles.
This implies that 1 mole of Hydrogen contains 6.02×10²³ particles. Also, 1 mole of oxygen contains 6.02×10²³ particles.
Thus, 1 mole of Hydrogen and 1 mole of oxygen contains the same number of particles.
Helium, neon,nitrogen and argon