The early ideas of the atom states that the indivisible object is hollow or is a solid object with nothing inside. The later discoveries or works of the scientists states that inside the atoms are the subatomic particles which are the electrons, protons, and neutrons.
The pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
Explanation:
In the present problem, the temperature is said to remain at constant and there is change in the pressure. So according to Boyle's law, the relationship between pressure and volume of any gaseous objects are inversely related to each other. In other words, the pressure attained by gas molecules in a container will be inversely proportional to the volume of the gas molecules occupied in the container, at constant temperature.

So, if two volumes V₁ and V₂ are considered, then their respective pressure will be represented as P₁ and P₂. Then, as per Boyle's law,

So let us consider, V₁ = 6 cm³ and V₂ = 4 cm³ and pressure P₁ = 405 kPa and we have to determine P₂.
Then, 
So, the pressure at new volume of 4 cm³ is 486 kPa. It can be seen that as there is decrease in the volume, there is an increase in the pressure. So it satisfied the Boyle's law.
Thus, the pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
Conduction should be the correct answer.
Answer:
See explanation below
Explanation:
In this case we have reaction of addition. In this case a diene reacting with an acid as HBr. This reaction is known as Hydrohalogenation, and, as we have a diene, this kind of reaction can be done as 1,4 addition. Which means that the reaction will be undergoing with an adition in the carbon 1, and carbon 4.
At room temperature we can expect that this reaction can be done in thermodynamic conditions, Now, as the problem states that is forming 4 products, we can expect products of a 1,2 addition too. This product can be formed if the reaction is taking place in the most stable carbocation, and then, by resonance, we can expect the 1,4 product too.
Now, the HBr can be attacked by the double bond of the first position, giving two possible products or by the double bond of the third position giving the other two products. These products are all possible, obviously the most stable will be the major of all of them, but the other three are perfectly possible. One product is formed without doing much, and the other by resonance. Same happens with the other double bond.
In the picture below, you have the mechanism for all the 4 products.
Hope this helps
The particles that make up the atomic nucleus of all atoms are both protons and neutrons.