Answer:
0
Explanation:
The overall charge on this atom is 0.
To find the charge on an atom;
charge = number of protons - number of electrons.
Note:
- Protons are the positively charged particles in an atom
- Electrons are the negatively charged particles in an atom
- Neutrons carries no charges on them.
Since the atom is made up of equal number of protons and electrons, the charge on it is 0.
If the number of electrons is more, the atom will be negatively charge but if the number of protons is more, it will be positively charged.
To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.
By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore




Here,
m = mass
g =Gravitational energy
The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

Remember the expression for which you can determine the relationship between mass, volume and density, in which

In this case the density would be that of the object, replacing

Since the displaced volume of water is 0.429 we will have to


The density of water under normal conditions is
, so


The density of the object is 
I’m not sure if you want some ideas but like if you go then eye colour hair colour and then genders?
The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.
The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.
1 == toroid
2= solenoid
Answer:
lives, forces and motion make things move and stay still. Pushing and pulling are examples of forces that can sped things up or slow things down. There are two types of forces, at a distance force and contact forces..