1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aalyn [17]
3 years ago
5

(b) If you decrease the length of the pendulum by 25%, how does the new period TN compare to the old period T?

Physics
1 answer:
malfutka [58]3 years ago
8 0

Answer:

The new period will be reduced by 50%

Explanation:

The period of pendulum is given by;

T= 2\pi\sqrt{\frac{L}{g} }\\\\\frac{T}{2\pi} = \sqrt{\frac{L}{g} }\\\\(\frac{T}{2\pi} )^2 = {\frac{L}{g}}\\\\\frac{T^2}{4\pi ^2} = {\frac{L}{g}}\\\\T^2(\frac{g}{4\pi ^2}) = L\\\\ \frac{g}{4\pi ^2}= \frac{L}{T^2}\\\\\frac{L_1}{T_1^2} = \frac{L_2}{T_2^2}

When the length is decreased by 25%, the new length L₂ is given by;

L₂ = 25/100(L₁)

L₂ = 0.25L₁

\frac{L_1}{T_1^2} = \frac{L_2}{T_2^2}\\\\T_2^2 = \frac{T_1^2L_2}{L_1} \\\\T_N^2 = \frac{T^2(0.25L_1)}{L_1}\\\\ T_N^2 =0.25T^2\\\\T_N = \sqrt{0.25T^2}}\\\\T_N = 0.5 T

Thus, the new period will be reduced by 50%

You might be interested in
What is the mass of a truck in grams of it produces a force of 1500N while accelerating at a rate of 6 m/s²?​
aleksley [76]

Answer:

250,000

Explanation:

<h2> </h2>

<h2>formula = ( F=ma </h2>

  • F=1500N
  • a=6m/s^2
  • F= ma
  • m=?
  • 1500/6 = m
  • m=250 kg
  • 1kg =1000gm so 250kg =250,000gm
  • m =250×10^3 gm
5 0
3 years ago
A 97.1 kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.63 r
sammy [17]

Answer:

the final angular velocity of the platform with its load is 1.0356 rad/s

Explanation:

Given that;

mass of circular platform m = 97.1 kg

Initial angular velocity of platform ω₀ = 1.63 rad/s

mass of banana m_{b} = 8.97 kg

at distance r = 4/5  { radius of platform }

mass of monkey m_{m} = 22.1 kg

at edge = R

R = 1.73 m

now since there is No external Torque

Angular momentum will be conserved, so;

mR²/2 × ω₀ = [ mR²/2 + m_{b} (\frac{4}{5} R)² + m_{m}R² ]w

m/2 × ω₀ = [ m/2 + m_{b} (\frac{4}{5} )² + m_{m} ]w

we substitute

w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1

w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )

w = 48.55 × [ 1.63 / ( 76.3908 ) ]

w = 48.55 × 0.02133

w = 1.0356 rad/s

Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s

8 0
3 years ago
The elements least likely to form bonds are found in what group
klasskru [66]
It is in the noble gas group which has a full valence electron shell found in group 18 
8 0
3 years ago
Read 2 more answers
James threw a ball vertically upward with a velocity of 41.67ms-1 and after 2 second David threw a ball vertically upward with a
Reptile [31]

Answer:

When have passed 3.9[s], since James threw the ball.

Explanation:

First, we analyze the ball thrown by James and we will find the final height and velocity by the time two seconds have passed.

We'll use the kinematics equations to find these two unknowns.

y=y_{0} +v_{0} *t+\frac{1}{2} *g*t^{2} \\where:\\y= elevation [m]\\y_{0}=initial height [m]\\v_{0}= initial velocity [m/s] =41.67[m/s]\\t = time passed [s]\\g= gravity [m/s^2]=9.81[m/s^2]\\Now replacing:\\y=0+41.67 *(2)-\frac{1}{2} *(9.81)*(2)^{2} \\\\y=63.72[m]\\

Note: The sign for the gravity is minus because it is acting against the movement.

Now we can find the velocity after 2 seconds.

v_{f} =v_{o} +g*t\\replacing:\\v_{f} =41.67-(9.81)*(2)\\\\v_{f}=22.05[m/s]

Note: The sign for the gravity is minus because it is acting against the movement.

Now we can take these values calculated as initial values, taking into account that two seconds have already passed. In this way, we can find the time, through the equations of kinematics.

y=y_{o} +v_{o} *t-\frac{1}{2} *g*t^{2} \\y=63.72 +22.05 *t-\frac{1}{2} *(9.81)*t^{2} \\\\y=63.72 +22.05 *t-4.905*t^{2} \\

As we can see the equation is based on Time (t).

Now we can establish with the conditions of the ball launched by David a new equation for y (elevation) in function of t, then we match these equations and find time t

y=y_{o} +v_{o} *t+\frac{1}{2} *g*t^{2} \\where:\\v_{o} =55.56[m/s] = initial velocity\\y_{o} =0[m]\\now replacing\\63.72 +22.05 *t-(4.905)*t^{2} =0 +55.56 *t-(4.905)*t^{2} \\63.72 +22.05 *t =0 +55.56 *t\\63.72 = 33.51*t\\t=1.9[s]

Then the time when both balls are going to be the same height will be when 2 [s] plus 1.9 [s] have passed after David throws the ball.

Time = 2 + 1.9 = 3.9[s]

4 0
3 years ago
In the Bohr model of the hydrogen atom, an electron({rm mass};m=9.1; times 10^{ - 31;}{rm kg}) orbits a proton at a distance of
max2010maxim [7]

Answer:

n=6.56×10¹⁵Hz

Explanation:

Given Data

Mass=9.1×10⁻³¹ kg

Radius distance=5.3×10⁻¹¹m

Electric Force=8.2×10⁻⁸N

To find

Revolutions per second

Solution

Let F be the force of attraction

let n  be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by

F=mω²r......................where ω=2π  n

F=m4π²n²r...............eq(i)

as the values given where

Mass=9.1×10⁻³¹ kg

Radius distance=5.3×10⁻¹¹m

Electric Force=8.2×10⁻⁸N

we have to find n from eq(i)

n²=F/(m4π²r)

n^{2} =\frac{8.2*10^{-8} }{9.11*10^{-31}* 4\pi^{2} *5.3*10^{-11}  }\\ n^{2}=4.31*10^{31}\\ n=\sqrt{4.31*10^{31}}\\ n=6.56*10^{15}Hz

8 0
3 years ago
Other questions:
  • A man is walking while riding a train. He says he is moving at 2 mph. A woman standing on a platform at a train station says the
    13·1 answer
  • Hellppppppppppp please thanks
    5·1 answer
  • Calculate the magnitude of the electric field at one corner of a square 2.42 m on a side if the other three corners are occupied
    15·1 answer
  • The period of a simple pendulum in a grandfather clock on another planet is 1.80 s. What is the acceleration due to gravity (in
    7·1 answer
  • Three light bulbs are wired in series. What happens if one of these light bulbs burn out
    7·2 answers
  • Which of the following items has the least inertia while at rest?
    12·2 answers
  • A Go Kart (m = 35 kg) has a top speed of 12 m/s . A student traveling at top speed locks the brake to avoid hitting a bus after
    14·1 answer
  • An object of mass 20g taken at a height of 2m above the ground. Which type of energy is possessed by the object at this height ?
    8·1 answer
  • All waves transmit energy. Only one type of wave does not require a medium to transmit energy. That is a _____wave?
    9·2 answers
  • Is it frictional force?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!