Answer:
It's a pretty simple suvat linear projectile motion question, using the following equation and plugging in your values it's a pretty trivial calculation.
V^2=U^2+2*a*x
V=0 (as it is at max height)
U=30ms^-1 (initial speed)
a=-g /-9.8ms^-2 (as it is moving against gravity)
x is the variable you want to calculate (height)
0=30^2+2*(-9.8)*x
x=-30^2/2*-9.8
x=45.92m
They are fused in the core of the star due to great pressures and temperatures. They are made all the way through iron. At that point the star dies. If it is a really large star it will become a supernova when it dies, creating all of the elements beyond iron as well, but only in its death. No star can create anything beyond iron in its life cycle
The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1
w1 = wo + ãt
w1 - final angular velocity
wo - initial angular velocity
18 = 0 + 4.5t t = 4 s
Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib
Vi = As * h = 1000 * 30 = 30,000 cm^3 = Vol. of the ice.
Vb = (Di/Dw) * Vi = (0.9/1.0) * 30,000 = 27,000 cm^3 = Vol. below surface - Vol. of water displaced.
27,000cm^3 * 1g/cm^3 = 27,000 grams = 27 kg = Mass of water displaced.