Answer:
The answer is "a, c and b"
Explanation:
- Its total block power is equal to the amount of potential energy and kinetic energy.
- Because the original block expansion in all situations will be the same, its potential power in all cases is the same.
- Because the block in the first case has no initial speed, the block has zero film energy.
- For both the second example, it also has the
velocity, but the kinetic energy is higher among the three because its potential and kinetic energy are higher. - While over the last case the kinetic speed is greater and lower than in the first case, the total energy is also higher than the first lower than that of the second.
- The greater the amplitude was its greater the total energy, therefore lower the second, during the first case the higher the amplitude.
Answer:
3600N
Explanation:
Given: m = 1200kg, Vo = 0m/s, Vf = 30m/s, Δt = 10s
ΣF = ma
we need to find 'a' first, using the definition of 'a' we get equation:
a = (Vf-Vo)/Δt
a = (30m/s)/10s
a = 3 m/s^2
now substitute into top equation
ΣF = ma
Fengine = (1200kg)(3m/s^2)
Fengine = 3600N
Answer:
Engular velocity: 
Linear velocity: 
The time it takes:

Explanation:
The magnitude of the centripetal acceleration can be related to the angular velocity and radius as:
(1)
Solving for w:
(2)
Replacing a=9,8m/s2 and r=6,375,000m:
(3)
And the angular velocity relates to the linear velocity:

The perimeter of the orbit is:

The time it takes:
