Hello!
The chemical reaction for the dissolving of calcium fluoride is the following:
CaF₂(s) ⇄ Ca⁺²(aq) + 2F⁻(aq)
In this reaction, and according to Le Chatelier's principle, the action that would shift this reaction away from solid calcium fluoride and towards the dissolved ions is the removing of fluoride ions.
Le Chatelier's principle states that in an equilibrium reaction, the system would shift in the opposite direction of the changes. If we remove fluoride ions from the system, it will shift towards the formation of more fluoride ions by dissolving more Calcium Fluoride to achieve equilibrium again.
Have a nice day!
Answer:
The answer you would be looking for is option A because all of the other options are either false, or beneficial to us, and i took the test. Thanks
Explanation:
Answer:
Oxygen is a simple molecular structure, where individual oxygen atoms are bonded to each other by strong covalent bonds. Hence, a low amount of energy is required to overcome these weak forces and oxygen has a low boiling point. Therefore, at room temperature, oxygen is a gas. Oxygen difluoride is a colorless gas, condensable to a pale yellow liquid, with a slightly irritating odor. It is the most stable of the compounds of fluorine and oxygen, which include O,F,, O,F, and 0,F2 but nevertheless it is a strong oxidizing and fluorinating agent. Oxygen Difluoride is a colorless gas or a yellowish-brown liquid with a foul odor. Just to finally link Joseph's answer to the question, oxygen difluoride will thus change from liquid to solid state when chilled from -220°c to -230°c. The boiling point of oxygen is -182.96 degrees Celsius (under 1 standard atmosphere). This means at temperatures below that point, oxygen is a solid or a liquid, and at temperatures above that point, oxygen is a gas. So at -183 degrees Celsius, oxygen is a liquid.
Explanation:
Answer:
I believe
Explanation:
I believe that the answer is B, but I could be wrong. I think it's How much work can be done in a given time, because, In physics, power is the amount of energy transferred or converted per unit time.