From the equation:
1 mole Fe₂O₃ needs 3 moles of CO
1.75 moles require:
1.75 x 3
= 5.25 moles of CO
Answer:
They are called homogenous mixtures. If you put sand into a glass of water, it is considered to be a mixture. You can always tell a mixture, because each of the substances can be separated from the group in different physical ways. You can always get the sand out of the water by filtering the water away.
Answer:
The area around the nucleus must be of low mass.
Explanation:
Rutherford`s experiment showed that there are some positive charges in the center of the atoms, and because they are all together, they will give a great mass to the atom.
It was quite different from Thomson`s experiment, in which it was thought that the negative charges were mixed with the positive charges, around the atom (like a Pudding Model). In Rutherford`s experiment, because the direction of beta particles, it was the prediction of the positive nucleus.
Hope this info is useful.
1) Use the fact that 1 mol of gas at STP occupies 22.4 liter
=> 1 mol / 22.4 l = x / 0.125 l => x = 0.125 l * 1 mol / 22.4 l = 0.00558 mol
2) Now use the molar mass of the gas
molar mass of CO2 ≈ 44 g / mol
Formula: molar mass = mass in grams / number of moles =>
mass in grams = molar mass * number of moles = 44 g/mol * 0.00558 moles
mass = 0.246 g
Answer: 0.246 g