1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
13

A train travels 120 km in 2 hours and 30 minutes. what is it average speed?

Physics
1 answer:
Solnce55 [7]3 years ago
4 0
The answer is 48Kmh because it is 120km divided by 2.5 or 2 and a half hours
You might be interested in
Also confused on this can someone please help??!
irga5000 [103]
The answer is 167 pounds.
7 0
2 years ago
Can someone pleaseeee answer this !!!!!!
LenaWriter [7]

Answer:

The person with locked legs will experience greater impact force.

Explanation:

Let the two persons be of nearly equal mass (say m)

The final velocity of an object (person) dropped from a height H (here 2 meters) is given by,

v=\sqrt{2gH}

(g = acceleration due to gravity)

which can be derived from Newton's equation of motion,

v^2=u^2+2aS

Now, the time taken (say t ) for the momentum ( mv ) to change to zero will be more in the case of the person who bends his legs on impact than who keeps his legs locked.

We know that,

Force=\frac{\Delta(mv)}{t}

Naturally, the person who bends his legs will experience lesser force since t is larger.

3 0
2 years ago
A race horse can run a mile race in just under 2 minutes. Is it possible for
liubo4ka [24]

Answer:

Yes.

Explanation:

A kilometer is less than a mile, therefore if a horse can finish one mile in less than 2 minutes then it can certainly do a kilometer in less than two minutes.

7 0
1 year ago
A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before
Darina [25.2K]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

4 0
2 years ago
Find the position of the center of mass of the system of the sun and Jupiter? (Since Jupiter is more massive than the rest of th
8090 [49]

Answer:

r_{cm} = 0.074 m from the position of the center of the Sun

Explanation:

As we know that mass of Sun and Jupiter is given as

M_s = 1.98 \times 10^{30} kg

M_j = 1.89 \times 10^{27} kg

distance between Sun and Jupiter is given as

r = 7.78 \times 10^{11} m

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them

so we will have

r_{cm} = \frac{M_s r_1 + M_j r_2}{M_s + M_j}

r_{cm} = \frac{1.98 \times 10^{30} (0) + (1.89 \times 10^{27})(7.78 \times 10^{11})}{1.98 \times 10^{30} + 1.89 \times 10^{27}}

r_{cm} = 0.074 m from the position of the center of the Sun

3 0
3 years ago
Other questions:
  • The picture on the left represents the reactants in the equation and the picture on the right represents the products. Does this
    9·1 answer
  • Tiles are 6 mm long how many can you fit into a space 54 cm long
    6·1 answer
  • You are heating a beaker of a chemical solution of an open flame. All of the following procedures must be followed a expect
    11·1 answer
  • A group of scientists decide to repeat the muon decay experiment (TR Section 2.7) at the Mauna Kea telescope site in Hawaii, whi
    15·1 answer
  • Christopher came down with chicken pox after spending time in his child's day care. The chicken pox represents what link in the
    14·1 answer
  • In order to ride a bike up a hill with increasing speed—
    9·1 answer
  • Define fundamental and derived quantities with two example of each. ​
    8·1 answer
  • Upon completing an interview, it is important that you send a follow-up thank you
    14·2 answers
  • Please Help Me!!!!!!​
    6·1 answer
  • is potential energy and kinetic energy real or is it theoretical and is used to explain how thing work? if it is real than where
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!