Answer:
Train accaleration = 0.70 m/s^2
Explanation:
We have a pendulum (presumably simple in nature) in an accelerating train. As the train accelerates, the pendulum is going move in the opposite direction due to inertia. The force which causes this movement has the same accaleration as that of the train. This is the basis for the problem.
Start by setting up a free body diagram of all the forces in play: The gravitational force on the pendulum (mg), the force caused by the pendulum's inertial resistance to the train(F_i), and the resulting force of tension caused by the other two forces (F_r).
Next, set up your sum of forces equations/relationships. Note that the sum of vertical forces (y-direction) balance out and equal 0. While the horizontal forces add up to the total mass of the pendulum times it's accaleration; which, again, equals the train's accaleration.
After doing this, I would isolate the resulting force in the sum of vertical forces, substitute it into the horizontal force equation, and solve for the acceleration. The problem should reduce to show that the acceleration is proportional to the gravity times the tangent of the angle it makes.
I've attached my work, comment with any questions.
Side note: If you take this end result and solve for the angle, you'll see that no matter how fast the train accelerates, the pendulum will never reach a full 90°!
Answer:
, where the minus indicates the direction is opposite to that of the throw.
Explanation:
a)
Since MKS stands for meter-kilogram-second and we know that:



We can write that:



These are conversion factors, equal to 1, so multiplying our results by them won't change their value, only their units.
So we have that:



b)
Newton's 2nd Law tells us that F=ma, and the definition of acceleration is
, so we have:

Taking the throw direction as the positive one, for our values we have:

A bicyclist can ride their bicycle still on the road. Bicycle riders be able to take the public ways which has the similar rights and accountability as motorists and are subject to the same guidelines and protocols. The law says that individuals who ride bikes should ride as nearby to the right side of the road as likely excluding under the following conditions: when passing, preparing for a left go, evading risks, if the lane is too constricted to share, or if oncoming a place where a right turn is approved. In a road which has a bike lane the bicyclists roving slower than road traffic must custom the bike way excluding when creating a left turn, passing, evading hazardous settings, or impending a place where a right turn is approved.
By definition we have to:
Applied force: It is the external force that acts directly on a body.
Therefore, we can say that if you have an object and push it towards yourself, you are exerting an external force on the object.
This external force was not acting on the object previously, therefore, it is a force that you are applying at that moment.
Answer:
you exert an Applied Force on an object when you pull it towards you
A. Applied Force
Answer:
<em>In the case of a solar thermal panel we are trying to heat above the ambient temperature so conduction and convection will work against us by taking heat from the panel to the out- side world. ... The sun (at 6000 C surface temperature) is hotter than the solar panel so the panel will get hot due to the solar radiation.</em>
Explanation: