I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
D. Because the moons shadow during a total lunar eclipse is tinnier than the earth.
The gravitational potential energy of the system will decreases from 1,250 J to 625 J. Option A is corect.
<h3>What is the law of conservation of energy?</h3>
According to the Law of Conservation of Energy, energy can neither be created nor destroyed, but it can be transferred from one form to another.
The total energy is the sum of all the energies present in the system. The potential energy in a system is due to its position in the system.
TE=KE+GPE
Case 1;
1450 = 200 J+GPE
GPE=1450 -200
GPE=1250 J
Case 2;
1450 = 825 J+GPE
GPE=1450 -825
GPE=625 J
The gravitational potential energy of the system will decreases from 1,250 J to 625 J.
Hence, option A is corect.
To learn more about the law of conservation of energy, refer to brainly.com/question/2137260.
#SPJ1
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2
To solve this problem we will apply the concepts related to the conversion of units for which we will have that 1 slug is equal to 14.59kg. At the same time we will use Newton's second law for which weight is defined as the product between mass and acceleration (Due to gravity). This is then
A: Using the conversion ratio of slug to kilogram we have to,

Then


B: Using Newton's second law we have to,


