Answer: The answer is bacteria. The correct answer is The letter B or the seconed one!
Answer:
A particular atom will have the same number of protons and electrons and most atoms have at least as many neutrons as protons. An element is a substance that is made entirely from one type of atom
Explanation:
so In simple terms an atom contains Protons and Electrons and can be found in an Element, but an element comprises of atoms which come together to form up that particular Element
Answer:
The anawer of this question is 0.024 m/h
Explanation:
Other explanations of the question are additional.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:
Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
Finally, we solve for the equilibrium concentration of ibuprofen:
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
Refer to the diagram shown below.
The piston supports the same load W at both temperatures.
The ideal gas law is
where
p = pressure
V = volume
n = moles
T = temperature
R = gas constant
State 1:
T₁ = 20 C = 20+273 = 293 K
d₁ = 25 cm piston diameter
State 2:
T₂ = 150 C = 423 K
d₂ = piston diameter
Because V, n, and R remain the same between the two temperatures, therefore
If the supported load is W kg, then
Similarly,
Because p₁/p₂ = T₁/T₂, therefore
The minimum piston diameter at 150 C is 20.8 cm.
Answer: 20.8 cm diameter