the water specific heat will remain at 4.184.
Answer:
Halfway between B and A on the return leg.
Explanation:
Your average SPEED for the entire trip will equal your constant speed as the time and distance increase at proportionate rates.
Your average VELOCITY will equal your constant speed while you travel from A to B because time and displacement are increasing at proportionate rates.
When you turn around at B to return, your Displacement is now decreasing while your travel time continues to increase, so your average velocity decreases.
Lets say the distance from A to B is 90 km and your constant speed is 30 km/hr.
your average speed is 30 km/hr because you took 6 hrs to travel 180 km
We want to find your position when your average velocity is 30/3 = 10 km/hr
it took 3 hrs to go 90 km from A to B. Let t be the time lapsed since turn around
your displacement is given by d = 90 - 30(t)
and your total time of travel is t + 3 hrs
v = d/t
10 = (90 - 30t) / (t + 3)
10(t + 3) = (90 - 30t)
10t + 30 = 90 - 30t
40t = 60
t = 1.5 hrs
This will occur when you are halfway between B and A
A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.
Read more on Brainly.com -
brainly.com/question/18743384#readmore
Velocity is a vector. Therefore, it depends on the direction. Pilots need to know the direction of wind, not just the speed. If the pilot is going South, and there's 5 mph wind going South, they'll be happy, but if the wind is going 5 mph North, they'll be going against the wind.