Answer:
b. 0.6m/s, 0.7m/s, 0.61m/s, 0.62m/s
Explanation:
Precision of a measurement is the closeness of the experimental values to one another. Hence, experimental measurements are said to be precise if they are close to each other irrespective of how close they are to the accepted value. Precision can be determined by finding the range of each experimental value. The measurement with the LOWEST RANGE represents the MOST PRECISE.
Note: Range is the highest value - lowest value
Set A: 1.5 - 0.8 = 0.7
Set B: 0.7 - 0.6 = 0.1
Set C: 2.4 - 2.0 = 0.4
Set D: 3.1 - 2.9 = 0.2
Set B has the lowest range (0.1), hence, represent the most precise value.
Answer:
1.7% is stored in the polar icecaps, glaciers, and permanent snow
Explanation:
70% of the Earth's surface is covered with water; However, only a small percentage, 0.025%, is suitable for human consumption. A limited resource whose demand, according to the forecasts of the Organization for Economic Cooperation and Development (OECD), will skyrocket up to 55% globally between 2000 and 2050.
In the attached infographic we observe that the total volume of water on Earth is 1,386 million cubic kilometers, of which<em> </em><u>1.7% is forming polar ice, cap glaciers and permanent snow</u>. 1,338 million cubic kilometers of that water is in seas and oceans, that is, 96.5% is in seas and oceans, that is, it is salt water that cannot be drunk.
Only 3.5% of the Earth's water is fresh, but of this percentage, only 1% of the Earth's fresh water flows through the river basins in the form of streams and rivers.
Answer:
Explanation:
The fish falls from vertical rest in a time of
t = √(2h/g) = √(2(2.27)/9.81) = 0.68 s
v = d/t = 5.6 / 0.68 = 8.2 m/s
A Parallel circuit has certain characteristics and basic rules: A parallel circuit has two or more paths for current to flow through. Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source.
1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz